Pixel Objectness

نویسندگان

  • Suyog Dutt Jain
  • Bo Xiong
  • Kristen Grauman
چکیده

We propose an end-to-end learning framework for foreground object segmentation. Given a single novel image, our approach produces a pixel-level mask for all “object-like” regions—even for object categories never seen during training. We formulate the task as a structured prediction problem of assigning a foreground/background label to each pixel, implemented using a deep fully convolutional network. Key to our idea is training with a mix of image-level object category examples together with relatively few images with boundary-level annotations. Our method substantially improves the state-of-the-art on foreground segmentation for ImageNet and MIT Object Discovery datasets. Furthermore, on over 1 million images, we show that it generalizes well to segment object categories unseen in the foreground maps used for training. Finally, we demonstrate how our approach benefits image retrieval and image retargeting, both of which flourish when given our high-quality foreground maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salient Object Detection via Objectness Proposals

Salient object detection has gradually become a popular topic in robotics and computer vision research. This paper presents a real-time system that detects salient object by integrating objectness, foreground and compactness measures. Our algorithm consists of four basic steps. First, our method generates the objectness map via object proposals. Based on the objectness map, we estimate the back...

متن کامل

Incorporating Network Built-in Priors in Weakly-supervised Semantic Segmentation

Pixel-level annotations are expensive and time consuming to obtain. Hence, weak supervision using only image tags could have a significant impact in semantic segmentation. Recently, CNN-based methods have proposed to fine-tune pre-trained networks using image tags. Without additional information, this leads to poor localization accuracy. This problem, however, was alleviated by making use of ob...

متن کامل

Built-in Foreground/Background Prior for Weakly-Supervised Semantic Segmentation

Pixel-level annotations are expensive and time consuming to obtain. Hence, weak supervision using only image tags could have a significant impact in semantic segmentation. Recently, CNN-based methods have proposed to fine-tune pre-trained networks using image tags. Without additional information, this leads to poor localization accuracy. This problem, however, was alleviated by making use of ob...

متن کامل

Salient Object Detection via Augmented Hypotheses

In this paper, we propose using augmented hypotheses which consider objectness, foreground and compactness for salient object detection. Our algorithm consists of four basic steps. First, our method generates the objectness map via objectness hypotheses. Based on the objectness map, we estimate the foreground margin and compute the corresponding foreground map which prefers the foreground objec...

متن کامل

Instance Embedding Transfer to Unsupervised Video Object Segmentation

We propose a method for unsupervised video object segmentation by transferring the knowledge encapsulated in image-based instance embedding networks. The instance embedding network produces an embedding vector for each pixel that enables identifying all pixels belonging to the same object. Though trained on static images, the instance embeddings are stable over consecutive video frames, which a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.05349  شماره 

صفحات  -

تاریخ انتشار 2017